OUP user menu

AICAR inhibits PPARγ during monocyte differentiation to attenuate inflammatory responses to atherogenic lipids

Dmitry Namgaladze, Marina Kemmerer, Andreas von Knethen, Bernhard Brüne
DOI: http://dx.doi.org/10.1093/cvr/cvt073 First published online: 26 March 2013

Abstract

Aims Transcriptional regulation through peroxisome proliferator-activated receptor γ (PPARγ) is critical for an altered lipid metabolism during monocyte to macrophage differentiation. Here, we investigated how 5-aminoimidazole-4-carboxamide riboside (AICAR), an activator of AMP-dependent protein kinase (AMPK), affects PPARγ during monocyte differentiation.

Methods and results During the differentiation of THP-1 monocytic cells or primary human monocytes to macrophages, we observed that AICAR inhibited the expression of PPARγ target genes, such as fatty acid-binding protein 4 or CD36. This effect was independent of AICAR conversion to AICAR ribotide and AMPK activation. While AICAR increased PPARγ mRNA expression that paralleled differentiation, it inhibited PPARγ protein synthesis without affecting PPARγ protein stability. Monocytes differentiated to macrophages in the presence of AICAR revealed an attenuated uptake of oxidized low-density lipoprotein (oxLDL) and reduced oxLDL-triggered c-Jun N-terminal kinase (JNK) activation. JNK and endoplasmic reticulum stress responses to the saturated fatty acid palmitate were attenuated as well, an effect mimicked by the knockdown of PPARγ. Although PPARγ has been reported to support alternative macrophage activation, AICAR did not inhibit interleukin-4-induced gene expression in differentiating monocytes.

Conclusion Inhibition of PPARγ-dependent gene expression during monocyte differentiation may contribute to an AICAR-elicited macrophage phenotype characterized by reduced inflammatory responses to modified lipoproteins and saturated fatty acids.

  • Fatty acids
  • Lipoproteins
  • Macrophages
  • Metabolism
  • Oxidized lipids
View Full Text