Dysfunctional Adipocytes in Cardiovascular Biology

Session held on 9 July 2016
doi:10.1093/cvr/cvw126

239

PDE5 inhibition ameliorates visceral adiposity targeting the miR-22 / SIRT1 pathway: evidence from the CECSiD trial
Sapienza University of Rome, Rome, Italy

Background: Visceral adipose plays a significant role in cardiovascular risk. PDE5 inhibitors (PDE5I) can improve cardiac function and insulin sensitivity in type 2 diabetic patients (TZDM).

Purpose: To investigate whether PDE5I affect visceral adipose tissue (VAT), specifically epicardial fat (EAT), and what the mechanism involved using microarray-based profiling of pharmacologically modulated mRNAs.

Methods: a randomized, double-blind, placebo-controlled study was designed in TZDM. 59 diabetic patients were randomized to receive 100 mg/6 Sildenafil or Placebo for 12 weeks. Fat biopsies were performed in a subgroup of patients. In a parallel animal study, d/db mice were randomized to 12 week Sildenafil or vehicle and VAT was collected. Main outcomes and measures were anthropometric and metabolic parameters. EAT quantification through cardiac magnetic resonance imaging (CMR), array of circulating 2005 mRNAs, qPCR and flow cytometry of VAT.

Results: Compared to Placebo, Sildenafil reduced waist circumference (p=0.024) an EAT by CMR (p =<0.005). Microarray analysis identified some mRNAs differentially regulated by Sildenafil, among which a downregulation of miR-22-3p, confirmed by real-time qPCR (p =<0.0001). Sildenafil’s modulation of miR-22-3p was confirmed in vitro in HL-1 cardiomyocytes. An up-regulation of miR-22-3p was found both in serum and subcutaneous fat in Sildenafil-treated subjects. Compared to vehicle, 12-week Sildenafil treatment downregulated miR-22-3p and upregulated SIRT1 gene expression in VAT from d/db mice, shifting adipose tissue cell composition toward a less inflamed profile.

Conclusions: Treatment with PDE5I in human and murine models of diabetes improve VAT targeting SIRT1 through a modulation of miR-22-3p expression.

237

AMP-activated protein kinase activation partially restores the anti-contractile effect of perivascular adipose tissue in male offspring of obese dams
KE. Zaborská1, G. Edwards1, C. Austin1, M. Warne1
1University of Manchester, Manchester, United Kingdom; 2Edge Hill University, Ormskirk, United Kingdom

Introduction: Maternal obesity pre-programs offspring to develop obesity and associated cardiovascu
lar disease although the underlying mechanism is currently unknown. Perivascular adipose tissue (PVAT) reduces vascular contractility in healthy blood vessels and dysfunction has been demonstrated in male offspring of obese dams.

Purpose: We aimed to determine the mechanisms by which an obese maternal diet pre-programs detrimental vascular changes in her offspring.

Methods: 6 week old female Sprague-Dawley rats were fed a 10% fat diet (controls) or an obesogenic, high fat diet (HFD, 45% fat) for 12 weeks before mating, during pregnancy and lactation. At weaning, offspring were provided with the control 10% fat diet until sacrifice at 12 and 24 weeks of age. PVAT-denuded mesenteric arteries from pups, with or without exogenous PVAT, were mounted on a wire myograph and concentration-response curves were constructed to thromboxane A2 receptor agonist U46619 (10M-3 m) in the presence or absence of 10mM A779652, an activator of AMP-activated protein kinase (AMPK), and/or glucosamine (an O-GlcNAcylator).

Results: Body weight and arterial blood pressure were significantly increased in HFD dams and their 24 weeks old offspring compared to controls but not in 12 weeks old offspring. Without PVAT, vessel contractions to U46619 were reduced in HFD dams’ offspring at both ages, effects mimicked in control arteries by preincubation with 10 mM glucosamine. When separately incubated, PVAT from control, but not from HFD offspring, exerted an anti-contractile effect on the corresponding PVAT-denuded arteries at both ages. Pre-incubation of PVAT with glucosamine diminished the anti-contractile effect of PVAT in vessels from control offspring at both ages. PVAT from HFD offspring pre-incubated with glucosamine had no effect on PVAT-denuded vessels but simultaneous AMPK activation within PVAT partially restored anti-contractile capability at both ages.

Conclusions: The diminished anti-contractile effects of PVAT in offspring of HFD dams can be mimicked by incubation of PVAT with glucosamine and partially restored by AMPK-activated protein kinase activation within PVAT.

238

Peroxisome proliferator activated receptor (PPAR)alpha-gamma agonist aleglitazar attenuates tumor necrosis factor (TNF)alpha-mediated inflammation and insulin resistance in human adipocytes
M. Massaro1, E. Scoditti1, M. Pellegrino1, MA. Carluccio1, N. Calabriso2, M. Wabitsch3, C. Storelli2, M. Wright4, R. De Caterina2
1Institute of Clinical Physiology-CNR, Lecce, Italy; 2University of Salento, Department of Biological and Environmental Science and Technology (DiTeb), Lecce, Italy; 3University of Ulm, Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent, Ulm, Germany; 4Roche Pharmaceuticals, Basel, Switzerland; 5G. D’Annunzio University, Chieti, Italy

Background: adipose tissue inflammation is a mechanistic link between obesity and the related sequelae, including insulin resistance and type 2 diabetes. Co-ligands of peroxisome proliferator activated receptor (PPAR) alpha and gamma, combining in a single molecule the metabolic and inflammatory-regulatory properties of alpha and gamma agonists, are promising therapeutic strategy to antagonize adipose tissue inflammation.

Purpose: to investigate the effects of the dual PPARalpha/gamma agonist aleglitazar on human adipocytes challenged with inflammatory stimuli and rendered insulin resistant.

Methods: Human Simpson-Golabi-Behmel syndrome adipocytes were treated with aleglitazar or the selective agonists for either PPARalpha or gamma, fenofibrate or rosiglitazone, for 24 h before stimulation with TNF-alpha. Conditioned media were then tested for MCP-1 by ELISA, the mRNA expression for MCP-1 as well as other as inflammatory cytokines were investigated by RT-PCR; the activation status of insulin signaling with regard to activation of mitogen-activated protein (MAP) kinases was assessed by Western analysis with antibodies recognizing the phosphorylated (activated) forms of each kinase.

Results: Aleglitazar, at concentrations as low as 10 nmol/L, reduced the stimulated expression of several pro-inflammatory mediators including interleukin(IL)-6, and chemokine (C-X-C motif) ligand(CXCL)-1/5, as well as the expression and release of monocyte chemotactant protein(MCP)-1. Correspondingly, functional monocyte migration assays revealed that aleglitazar reduced monocyte migration, an effect that was consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar reversed the TNF-alpha-mediated suppression of insulin-stimulated ser312Akt phosphorylation and decreased the TNF-alpha-induced ser312 IRS-1 phosphorylation, two major switches in insulin-mediated metabolic activities; also restoring glucose uptake in insulin-resistant adipocytes. These effects were associated with the prevention of activation of serine and threonine kinases involved in the inflammatory-mediated expression of MCP-1, and with a prevention of insulin resistance, involving the p38 mitogen-activated protein.

Conclusion(s): Aleglitazar reduces adipose inflammation and dysfunction in insulin signaling in activated adipocytes. Such effects appear to be mediated, at least in part, by interference with the activation of p38 MAPK. Although the extent of aleglitazar effect was never superior to those of PPARalpha and gamma agonist combination, these data suggest that aleglitazar may benefit diabetic and obese patients, and deserve further investigation.