High density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-kB/STAT1-IRF1 signaling

EPC. Van Der Vorst1; K. Theodorou2; MA. Hoeksema3; Y. Wu4; P. Goossens5; M. Van Eck6; K-A. Rye7; M. Mostovyak; OB. Kuchmenko; LS. Mkhytaryan; IN. Ievstratova; NM. Vasylynchuk; TF. Drobotko

1Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands; 2Academic Medical Center of Amsterdam, Amsterdam, Netherlands; 3Institut Pasteur, Paris, France; 4Centre for Vascular Research, Sydney, Australia; 5Leiden Academic Center for Drug Research, Leiden, Netherlands; 6Centre for Cardiovascular Prevention (PEK), Munich, Germany; 7Centre for Vascular Research, Sydney, Australia

Background: Membrane cholesterol is known to modulate a variety of cell signaling pathways and functions. While cholesterol depletion by High-Density Lipoproteins (HDL) has potent anti-inflammatory effects in various cell types, its effect on inflammatory responses in macrophages remain ill defined.

Methods & Results: Pre-incubation of human and murine macrophages in vitro with human recombinant apolipoproteinA-I (apoA-I) or native HDL significantly decreased LPS-induced anti-inflammatory IL-10 production, while the opposite was observed for the pro-inflammatory mediators IL-12 and TNF. We show that these effects are mediated by passive cholesterol depletion and lipid raft disruption, without involvement of ABCA1, ABCG1, SR-B1 or CD36. These pro-inflammatory effects are confirmed in vivo in peritoneal macrophages from ApoA-I transgenic mice, which have high circulating HDL levels. In line, innate responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Native and reconstituted HDL enhances Toll Like Receptor-induced signaling by activating protein kinase C (PKC), since inhibition of PKC ablated the observed HDL effects. Using microarray analysis and macrophages from NF-kB luciferase mice, we observed that HDL induces NF-kB activation. Western blot and ChIP-PCR analyses showed that in particular the p65 subunit was activated. Using specific knock-out mice for the upstream activation pathways, we show that the observed HDL effects are STAT1 involved in the pro-inflammatory HDL effects on IL-10 and IL-12 secretion. On the other hand, using pharmacological inhibitors, we show that HDL enhances ADAM protease activity thereby mediating TNF release.

Conclusion and Clinical Relevance: HDL exerts pro-inflammatory effects on macrophages via passive cholesterol depletion by activation of PKC, NF-kB and STAT1. These pro-inflammatory activities on macrophages could at least partly undermine the disappointing therapeutic potential of HDL raising therapy in current cardiovascular clinical trials.

51 Protein components of HDL as markers of cardiovascular damage in patients with arterial hypertension

M. Mostovyak; OB. Kuchmenko; LS. Mkhytaryan; IN. Ievstratova; NM. Vasylynchuk; TF. Drobotko

NSC Institute of Cardiology, M.D. Saratko, Molecular Biochemistry Laboratory, Kiev, Ukraine

Purpose: HDL (high-density lipoproteins) are atheroprotective. The mechanisms of HDL-mediated atheroprotection are underlain by anti-atherogenic biological activities of HDL, and do not necessarily correlate with HDL-Cholesterol (HDL-C) concentration. Atheroprotective activities of HDL are thought to be mediated in part by both ApoA1 within the core lipoprotein particle and an assortment of HDL-associates. HDL particle enriched in paraoxonase-1 (PON1), an atheroprotective protein, have been linked to the antioxidant, anti-inflammatory, and lipid cargo-carrying functions of HDL. PON1 has been shown to help HDL prevent the accumulation of lipid peroxides in oxidized LDL (low-density lipoproteins), inactive bioactive oxidized phospholipids, stimulate HDL-mediated eNOS-dependent NO production, and enhance cholesterol efflux from cholesterol-laden macrophages. Myeloperoxidase (MPO), like PON1, both binds to HDL and is mechanistically linked to oxidative stress and atherosclerosis. The aim of this study was to evaluate the protein components of HDL in patients with arterial hypertension (AH).

Methods: The study included 63 patients (mean age 61 years) with AH stage 2. As control group we enrolled 42 healthy persons (mean age 59 years). Levels of protein oxidation products (COPPs) in serum, HDL and LDL; lipoprotein fractions, activities of PON1 and MPO, degree of oxidative modification of LDL in comparison with healthy persons. Decrease of PON1 activity and increase of MPO activity were observed in patients with AH in comparison with healthy persons. The levels of total cholesterol, LDL-C and HDL-C were within the normal range in patients with AH. CRP was also within the values characteristic of healthy individuals.

Results: The accumulation of carboxyl oxidation protein products in blood, HDL and LDL eventually results in oxidative modification of HDL and LDL, and loss of its functional properties. The activity of HDL-associated enzymes (PON1 and MPO) is the most informative indicator of functional state of HDL and not the level of HDL-C. Changes of MPO and PON1 activity may serve as a useful marker of dysfunctional HDL. Our evaluation showed a significant decrease of PON1 activity and increase of MPO activity that may contribute to the HDL oxidation, irrespective of HDL-C levels. A more sensitive marker of inflammation can serve as MPO activity, while the level of CRP would remain within the normal range, as has been shown in our research work. Demonstrated changes in the functional state of HDL in our opinion, create a predisposition to development and progression of atherosclerosis in patients with AH.