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Does altered glucocorticoid homeostasis increase cardiovascular risk?
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Abstract

The hypothalamic–pituitary–adrenal (HPA) axis, like the sympathetic nervous system and the renin–angiotensin–aldosterone (RAA)

system, sustains life in stressful situations by increasing vascular tone and ensuring fuel availability. It also modulates inflammation and

tissue repair processes. Untoward cardiovascular effects of chronic sympathetic and RAA activation are well recognized, illustrating that the

short-term benefit of the physiologic stress response can be detrimental in the long term. Similarly, chronic tissue exposure to glucocorticoids

may lead to metabolic and vascular changes that accelerate vascular senescence. Specific situations associated with chronic activation of the

HPA axis—such as major depression, inflammatory disease and perhaps the metabolic syndrome—may derive some of their associated

cardiovascular risk from untoward glucocorticoid effects. Since there are no definitive clinical studies directly addressing the relationship

between the HPA axis and cardiovascular disease, we present indirect evidence from two types of studies: (1) studies that examine the

cardiovascular effects of exogenous glucocorticoids, and (2) studies demonstrating that endogenous glucocorticoid activity varies between

individuals. The effects of physiologic increases in endogenous glucocorticoid activity may not always mirror the effects of supraphysiologic

glucocorticoids. Nevertheless, the known effects of exogenous glucocorticoids provide important insights into the putative effects of

endogenous glucocorticoids.

D 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The hypothalamic–pituitary–adrenal (HPA) axis is vital

for survival in stressful situations such as hemorrhage and

sepsis [1]. The primary glucocorticoid in humans, cortisol,

is secreted continuously by the adrenal cortex in a diurnal

pattern, with early morning peaks and evening troughs, but

its release and effects are dynamic and increase dramatically

in the setting of environmental stressors [2,3]. Glucocorti-

coid deficiency (resulting from pituitary or adrenal dys-

function) can result in hypotension, weight loss,

hypoglycemia and death, especially in the setting of stress

[4]. Conversely, glucocorticoid excess (resulting from
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endocrine adenomas or from pharmacologic treatment with

glucocorticoids) can contribute to the development of

hypertension, insulin resistance, hyperglycemia and weight

gain [5,6]. Hence, grossly excessive or impaired cortisol

secretion can adversely affect many bodily functions.

Normal glucocorticoid physiology can be summed up

into three main roles. The first is to bprimeQ the metabolic,

autonomic, psychological, hemostatic and cardiovascular

components of the stress response in preparation for various

stresses that may occur during the day [7]. These permissive

actions facilitate the vascular and metabolic effects of other

stress hormones, such as catecholamines, glucagon and

angiotensin-II, through stimulation of alpha-1 adrenergic

and angiotensin II receptor expression, and increasing the

affinity and binding capacity of beta-adrenergic receptors

[8–12]. The second role of glucocorticoids is suppressive.

Glucocorticoids prevent inflammation, cellular proliferation
64 (2004) 217–226
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and tissue repair processes from bovershootingQ and leading

to self-injury or circulatory collapse [7,13,14]. A third role

of glucocorticoids is partitioning of body composition.

Glucocorticoids prepare the organism for prolonged nutri-

tional deprivation by facilitating proteolysis and insulin

resistance at the level of the muscle [15–17]. However,

insulin sensitivity and lipogenesis in fat depots are enhanced

[18,19]. Because of the pleiotropic effects of glucocorti-

coids, it is probable that certain effects—such as increased

blood pressure and insulin resistance—may harm the

cardiovascular system, while other functions, such as

suppression of inflammation and cellular proliferation,

may be advantageous. However, it is likely that the net

effects of increased glucocorticoid tone are harmful to the

vasculature.

Epidemiologic studies suggest accelerated atherosclero-

sis in the presence of long-term excessive glucocorticoid

exposure. Prior to surgical treatment of Cushing syndrome,

it was not uncommon for these patients to experience early

death from myocardial infarction or stroke [20]. In animal

models, glucocorticoids can induce atherosclerosis [21].

Observational studies in humans suggest that corticosteroid-

treated rheumatoid arthritis and lupus patients have signifi-

cantly more atherosclerosis than those not treated with

steroids and the risk of atherosclerosis is related to the

cumulative dose of corticosteroids [22,23]; however, the

extent of inflammation is an important confounder in the

atherosclerosis associated with rheumatologic disease [24].

Additionally, there have been case reports of adverse

outcomes of steroid-dependent rheumatoid arthritis patients

treated with thrombolytic agents for acute myocardial

infarction, perhaps due to increased risk of myocardial

rupture [25]. However, there is no consensus that gluco-

corticoids are harmful if given acutely in the setting of

myocardial infarction [26].
  by guest on 20 M
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2. Tissue regulation of glucocorticoid function

Glucocorticoids readily diffuse through cellular mem-

branes and exert their effects by binding to intracellular

receptors of two types. Type I receptors are mineralocorti-

coid receptors (MR) and type II receptors are the classic

glucocorticoid receptors (GR). Both receptors reside in the

cytoplasm in the inactivated state. Once activated by

glucocorticoid binding, the GR enters the nucleus. The

GR is ubiquitous, accounting for the widespread effects of

glucocorticoids. The activated GR influences nuclear tran-

scription directly by binding to DNA, enhancing or

inhibiting gene transcription via interaction with the

promoter regions of glucocorticoid-responsive genes (so-

called glucocorticoid response elements). Glucocorticoids

also exert effects by interacting with protein transcription

factors without binding to DNA directly [13,27,28]. This

indirect mechanism appears to account for most of the anti-

inflammatory effects of glucocorticoids [13].
The response of a tissue to glucocorticoids depends on

two main factors: intracellular hormone concentrations and

differential receptor expression and function. Intracellular

hormone levels are affected by adrenal glucocorticoid

secretion, exogenous glucocorticoid exposure and the intra-

cellular metabolism of cortisol [13,29]. In some tissues, such

as the kidney, the enzyme 11-beta hydroxysteroid dehydro-

genase II (11-beta HSD II) converts cortisol to inactive

cortisone, allowing aldosterone to bind to its receptor

without competition from high concentrations of cortisol;

deficiency of this enzyme, as seen in apparent mineralocorti-

coid excess syndrome, results in renal-mediated congenital

hypertension [30,31]. The enzymatic counterpart, 11-beta

HSD I, re-activates cortisone to cortisol [32] and is present in

many tissues, including fat, liver, muscle and vascular

endothelium [33–38]. The deactivation and activation of

cortisol by 11-beta-HSD enzymes allows for tissue-specific

glucocorticoid effects by modulating the concentration of

glucocorticoids present in the active or inactive forms.

Tissue sensitivity to glucocorticoids is dynamic. For

example, the effects of exogenous hydrocortisone on

glucose metabolism and insulin kinetics are more dramatic

when hydrocortisone is given in the evening, when

endogenous glucocorticoid levels are usually low, than

when given in the morning, when endogenous glucocorti-

coid levels are high [39].

GR variants, namely the Bcl1 restriction fragment length

polymorphism and the N363S variant, have been described

and have been associated with Cushingoid features, hyper-

tension, visceral obesity and hyperinsulinemia. Recently,

Lin et al. [40] reported that the N363S variant was four

times more frequent in those with obstructive coronary

artery disease (CAD) and five times more frequent in those

with both obesity and CAD than in controls.
3. Inter-individual variability in HPA axis and

glucocorticoid tone

Methods to characterize the activity of the HPA axis

include measurements of plasma or salivary cortisol levels

at specific times of day, 24-h urinary excretion of cortisol

(or metabolites) and response of the HPA axis to exogenous

glucocorticoids, ACTH or CRH analogues. These tests can

identify severe HPA axis pathology (e.g., Cushing or

Addison disease) but are often unable to differentiate

between varying levels of glucocorticoid tone in the general

population. More technically challenging methods of

assessing glucocorticoid tone that are used in the research

setting include serial measurements of diurnal fluctuations

in cortisol [41], low-dose dexamethasone suppression test-

ing, and measuring tissue concentrations of glucocorticoid

receptors and tissue activity of 11-beta-HSD isoenzymes

[42–44]. These techniques have provided evidence that

glucocorticoid tone varies between individuals, even in the

absence of a defined endocrinopathy.
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Sustained physiological stress, such as starvation, leads

to substantially increased circulating cortisol levels through-

out the day [45,46]. Similarly, sustained caloric restriction in

rodents is associated with elevated glucocorticoid levels

[47,48]. Increased glucocorticoid activity in the setting of

starvation may be adaptive—preventing hypoglycemia and

slowing fuel utilization. However, subtle variation in

glucocorticoid activity may be apparent in other conditions,

and may not always be adaptive: Depressed patients have

higher circulating glucocorticoid levels and have impaired

suppression of cortisol in response to dexamethasone [49];

these abnormalities resolve with treatment of the depression

[50]. Many depressed patients also exhibit signs of

increased glucocorticoid tone: central obesity, menstrual

irregularity, immunosuppression and osteoporosis [51].

Elderly patients tend to have slightly higher levels of

circulating cortisol than younger patients and may exhibit a

blunted circadian amplitude of cortisol secretion [52,53].

Patients with high waist-to-hip ratios also may have blunted

diurnal patterns of cortisol secretion [41] and impaired

cortisol suppression in response to low-dose dexamethasone

[54]. Twenty-four-hour secretion of cortisol metabolites

may be elevated in the metabolic syndrome as compared to

controls [55].

In a study of healthy elderly men and women, Huizenga

et al. showed that the suppression of cortisol in response to

low-dose dexamethasone had marked inter-individual var-

iation. A significant correlation between baseline response

to dexamethasone and the response 2.5 years later demon-

strated relative intra-individual stability, suggesting that

individuals may have HPA tone bset pointsQ [56]. Even

healthy young men have significantly different responses to

dexamethasone suppression testing [57]. Suggested causes

of inter-individual variability in HPA tone include low birth

weight [58], stress [59], visceral obesity [60] and age-related

changes in the axis [52].

At the tissue level, the regeneration of cortisol from

cortisone in adipose tissue (via 11-beta HSD I) depends

upon body mass index, cytokine exposure, insulin-like

growth factor-1 (IGF-1) activity and insulin levels

[33,34,61–63], and may therefore vary between individuals

with different levels of inflammation, insulin sensitivity,

growth hormone activity or obesity. In skeletal muscle,

human glucocorticoid receptor concentrations and 11-beta-

HSD I expression may be positively correlated with insulin

resistance, obesity and hypertension [64,65].

Given these observations, it is likely that some individ-

uals have higher glucocorticoid tone than others, especially

in particular tissue beds. Glucocorticoid tone, like blood

pressure, heart rate, cholesterol levels, body mass index or

sympathetic tone, may be a predictor of cardiovascular risk,

even if it is difficult to measure in a given patient at a given

time. We have come to recognize the extent to which high

sympathetic tone and high RAS tone adversely impact

cardiovascular disease by observing the benefits of beta-

adrenergic blockers and drugs that block the RAS. To date,
however, we have no such evidence that pharmacological

glucocorticoid blockade has salutary cardiovascular effects.

Glucocorticoid receptor blockade and interference with

adrenal glucocorticoid production have been attempted only

on a limited basis, due to poor efficacy or unacceptable

toxicity [66]. For example, systemic treatment with the GR

antagonist mifepristone leads to compensatory increases in

cortisol [67], which, by activity at MRs might attenuate the

benefit of GR blockade. Similarly, other compensatory

mechanisms, such as increased ACTH, renin and angioten-

sin II, may mitigate prolonged cardiovascular benefits of

aminoglutethimide [68,69], returning cortisol levels to pre-

treatment levels after several days [70]. Compensatory

increases in ACTH may blunt salutary effects of glucocorti-

coid blockade via direct lipid effects [71], direct vascular

effects [36] and increased mineralocorticoid production

[72]. Although ACE inhibitors may modulate tissue cortisol

metabolism as a secondary mechanism of action [73], it is

unknown whether specific blockade of tissue glucocorticoid

activity (such as blockade of 11-beta-HSD-mediated cortisol

regeneration) will have clinical benefits [42].
4. Effects of excess glucocorticoids on specific

cardiovascular risk factors

4.1. Body composition

Fat cells are metabolically active, secreting hormones,

cytokines and metabolites that adversely affect blood

pressure, plasma lipoproteins, coagulation and insulin resist-

ance [74]. Any metabolic change that leads to obesity,

particularly its visceral component, may thereby increase

cardiovascular risk. In the presence of insulin, glucocorti-

coids promote terminal differentiation of pre-adipocytes and

fibroblast-like stromal vascular precursor cells into mature

adipocytes [75,76]. Glucocorticoids and insulin act synerg-

istically to increase the activity of adipocyte lipoprotein

lipase [77], freeing lipids in circulating lipoproteins for

storage in fat cells. Glucocorticoids and insulin also increase

the activity of 11-beta-HSD I in adipocytes, especially in

visceral fat depots [62], potentially augmenting abdominal

obesity in the setting of high insulin and glucocorticoid

activity. Transgenic mice with increased 11-beta HSD-1

activity in adipocytes exhibit obesity and associated adverse

metabolic complications [78]. Desensitization in adipocytes

to the lipolytic effects of catecholamines may also contribute

to visceral adiposity with long-term increases in glucocorti-

coid exposure [79]. However, the insulin resistance that

accompanies chronic elevated glucocorticoid exposure may

result in visceral adipocytes that are less sensitive to the

antilipolytic action of insulin, contributing to elevated

circulating free fatty acid levels (Fig. 1; Table 1) [79,80].

Increased visceral adiposity and decreased muscle mass

are features of aging in humans, and may result, in part,

from increased glucocorticoid activity coupled with



Fig. 1. Glucocorticoid effects on various cardiovascular risk factors.
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decreased growth hormone and IGF-1 activity [81,82].

Visceral obesity may be apparent in depressed younger

patients as well, perhaps due in part to chronic hyper-

cortisolemia and glucocorticoid-mediated tissue effects [2].

4.2. Plasma lipoprotein metabolism

Obesity of any etiology can have ill effects on plasma

lipoproteins, and obesity from glucocorticoid exposure is no

exception [5]. Visceral obesity, in particular, is associated

with low high-density lipoprotein cholesterol (HDL-C), high

triglyceride levels and small and dense low-density lip-

oprotein cholesterol (LDL-C) particles [83,84]. Glucocorti-

coids also have direct effects on circulating lipids and

lipoproteins, increasing LDL-C, triglycerides and HDL-C.

Lipid changes can occur within 48 h of the initiation of

prednisone treatment and therefore cannot be attributed to

changes in adiposity; these increases in total cholesterol,

LDL-C and HDL-C are sustained in long-term follow-up

[85,86]. Prednisone-treated patients with systemic lupus

erythematosis (SLE) also have elevated apolipoprotein B

levels [87].

Glucocorticoids decrease the concentration of LDL-C

receptors on hepatocytes [88] leading to higher LDL-C

levels. Glucocorticoid administration leads to hypertrigly-

ceridemia through increased production and secretion of

very low density lipoprotein (VLDL) from the liver [89].

The increase in HDL-C associated with glucocorticoids may

be due to increased apolipoprotein-A synthesis by the liver,

and may mitigate some of the adverse effects of increased

LDL-C and triglycerides [90].
4.3. Carbohydrate metabolism

Glucocorticoids lead to muscle and hepatic insulin

resistance and can precipitate hyperglycemia [7]. Human

and animal studies have helped elucidate the mechanisms

for acute glucocorticoid-induced insulin resistance includ-

ing stimulation of hepatic gluconeogenesis and decreased

muscle glucose uptake. In the liver, glucocorticoids

oppose the actions of insulin and activate gluconeo-

genesis by increasing acetyl coenzyme-A levels; this

leads to feedback inhibition of the pyruvate dehydrogen-

ase complex (PDH), stimulation of pyruvate carboxylase

(PC) and phosphoenol pyruvate carboxykinase (PEPCK).

Glucocorticoid-induced increases in citrate concentrations

augment feedback inhibition of glycolysis [91]. In rat

skeletal muscle, exogenous glucocorticoids cause carbo-

hydrate-related insulin resistance by inhibition of GLUT

4 transporter recruitment to the cell surface [92], and by

decreasing insulin receptor substrate (IRS-1) levels [93].

The thiazolidinediones are insulin sensitizers that may

oppose many of these metabolic pathways and are

effective in treating glucocorticoid-induced diabetes mel-

litus [94].

4.4. Endothelial function and oxidative stress

Endothelial dysfunction often precedes atherosclerosis

and is associated with impaired nitric oxide (NO) produc-

tion, perturbed interactions between platelets, leukocytes

and the vessel wall, and alterations in thrombosis and

thrombolysis [95,96]. Endothelial dysfunction can be



Table 1

Effects of glucocorticoids on cardiovascular risk factors and atherosclerotic mediators

Risk factor/mediator Effect Evidence Reference

Metabolic

Visceral obesity Increase Human adipocytes in vitro [75–77]

Animals in vivo [78]

Low-density lipoprotein cholesterol Increase Healthy humans in vivo [85]

High-density lipoprotein cholesterol Increase Healthy humans in vivo [86]

Triglycerides Increase Healthy humans in vivo [89,90]

Insulin resistance/glucose intolerance Increase Healthy humans in vivo [7,94]

Vascular tone/oxidative stress

Blood pressure Increase Healthy humans in vivo [10]

Endothelial function Impaired Healthy humans in vivo [98]

NADH/NADPH oxidase Variable Human vascular cells in vitro [103]

Inducible nitric oxide synthase Decrease Human and animal endothelial cells in vitro [99]

Endothelial nitric oxide synthase Variable Human in vitro [100,102]

Endothelin-1 Increase Animal vascular endothelial cells in vitro [105]

Endothelin-1 receptor Decrease Animal vascular smooth muscle cells in vitro [106,107]

Angiotensinogen Increase Human adipocytes in vitro [8]

Animal adipocytes in vitro [110]

Angiotensin-converting enzyme Increase Animal vascular smooth muscle cells in vitro [108,109,111]

Angiotensin II type I receptor Increase Animal vascular smooth muscle cells in vitro [108,109]

Alpha-1 adrenergic receptor Increase Animal vascular smooth muscle cells in vitro [108,109]

Prostacyclin E2 Decrease Animal vascular smooth muscle cells in vitro [108,109,111]

Hemostasis

Platelet activator inhibitor-1 Increase Human adipocytes in vitro [113,114]

Von Willebrand factor Increase Human endothelial cells in vitro [112]

Inflammation

Cellular adhesion molecules ICAM-1, ELAM-1 Decrease Human endothelial cells in vitro [125]

Plasma matrix metalloproteinases MMP-2, 9 Decrease Healthy humans in vivo [123]

Circulating cytokines IL-1,2, 6 and TNF-alpha Decrease Depressed humans in vivo [119]

Rheumatoid arthritis humans in vivo [120]

C-reactive protein Increase Human hepatocytes in vitro [128]

Variable Animals in vivo [129,130]

Decrease Rheumatoid arthritis humans in vivo [135]
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precipitated by hyperglycemia, hypertension and dyslipide-

mia, all of which are well-known effects of chronic

glucocorticoid exposure [97]. Cortisol administration to

healthy normotensive men may also impair cholinergic

vasodilation directly [98]. This may be mediated in part by

reduced activity of inducible nitric oxide synthase (iNOS)

[99] or by increased oxidative stress. Oxidative stress may

be especially pronounced with prolonged glucocorticoid

exposure [100].

Endothelial function is closely tied to the degree of tissue

oxidant stress. Three major sources of reactive oxygen

species include uncoupling of the endothelial nitric oxide

synthase (eNOS), xanthine oxidase and NADH/NADPH

oxidase [101]. In vitro, glucocorticoids may indirectly

stimulate eNOS and release of NO [102], but may decrease

eNOS mRNA stability [100]. Patients with Cushing

syndrome may have increased nitrotyrosine levels (a

measure of increased oxidative stress) in vascular tissue

and decreased brachial artery reactivity [103]. Human

umbilical vein endothelial cells exposed to dexamethasone

generate reactive oxygen species via stimulation of NADPH
oxidase and xanthine oxidase [103]. However, prednisolone

and hydrocortisone downregulate NADPH oxidase in

human aortic vascular smooth muscle cells in vitro [103],

and the effects of glucocorticoids on xanthine oxidase have

been inconsistent [100]. Furthermore, since oxidative stress

is often coupled to inflammation [104] and glucocorticoids

have potent anti-inflammatory effects, it is plausible that

glucocorticoids can indirectly reduce oxidative stress by

suppression of inflammation (discussed below).

Glucocorticoids also may stimulate release of the potent

vasoconstrictor endothelin-1 [105], however, this effect may

be counterbalanced by a compensatory decrease in endo-

thelin-1 receptors [106,107].

4.5. Vascular tone

Glucocorticoids also increase vascular tone by endothe-

lial-independent mechanisms. Dexamethasone increases

blood pressure in healthy adults by increasing total

peripheral resistance, whereas fludrocortisone (a selective

mineralocorticoid) increases blood pressure by increasing



J.P. Girod, D.J. Brotman / Cardiovascular Research 64 (2004) 217–226222

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/64/2/217/321301 by guest on 20 M

arch 2024
cardiac output [10]. Glucocorticoids augment vascular tone

through permissive actions, enhancing the activity of

adrenergic stimulation, angiotensin II and possibly endo-

thelin-1. Glucocorticoids up-regulate angiotensin II type I

receptor expression and alpha-1 adrenergic receptors in rat

vascular smooth muscle cells and potentiate the vaso-

constrictive actions of angiotensin-II and norepinephrine

in animals [108,109]. Glucocorticoids may also increase

hepatic and adipocyte production of angiotensinogen

[8,110], increase ACE expression and activity, and reduce

prostacyclin E2 synthesis in endothelial cells and vascular

smooth muscle cells [108,109,111]. All of these actions may

underlie the known adverse effects of glucocorticoids on

blood pressure.

4.6. Hemostasis

Although there are no in vivo studies in humans

demonstrating that glucocorticoids directly affect hemo-

stasis, there is in vitro and epidemiologic evidence of this

phenomenon. In cultured human umbilical vein endothelial

cells, dexamethasone increases production of von Wille-

brand Factor (vWF), endothelin and PAI-1 [112]. Two

studies have demonstrated dexamethasone-mediated

increases in PAI-1 in cultured human adipose tissue

[113,114]. In patients with Cushing syndrome, elevated

levels of vWF, PAI-1, thrombin–antithrombin and plasmin–

antiplasmin complexes and factor VIII may resolve after

curative surgical treatment [115–117].

4.7. Inflammation and tissue repair

Atherosclerosis is, in part, an inflammatory disease of

the subendothelium [118]. The relationships between

glucocorticoids, inflammation and vascular disease are

complex. In some clinical settings, acute administration

of glucocorticoids is associated with decreased circulat-

ing levels of IL-6 and CRP [119,120]. Similarly, short-

term glucocorticoid exposure attenuates many of the

known mediators of vascular lesions: cellular adhesion

molecule expression (ICAMs, selectins), monocyte che-

motaxis and phagocytosis, LDL oxidation, T-cell activa-

tion, collagen and extracellular matrix deposition,

smooth muscle proliferation and matrix metalloproteinase

activity [121–125]. However, these acute anti-inflamma-

tory effects may wane with long-term glucocorticoid

exposure [126]. On the other hand, glucocorticoid

administration elicits a leukocytosis [119,127], and

cytokines such as TNF-alpha, IL-6 and IL-1 are

elaborated by adipocytes and may be increased in the

setting of obesity. Glucocorticoids also may directly

augment the production of some cytokines at the gene

transcription level. Dexamethasone potentiates IL-6-

induced CRP release by in vitro human hepatic cells

[128]. In some animal models, ACTH and prednisolone

may increase CRP [129] by over 50-fold, but this has
not been confirmed in other animal models [130] or in

humans. Despite short-term decreases in IL-6 with

glucocorticoid administration, in prolonged stress the

adrenal gland may be a major source of IL-6 [131].

One study in rats showed stress-induced systemic IL-6

levels to decrease by 80% with adrenalectomy [132].

Cytokines appear to activate the HPA axis [133]. IL-6

directly stimulates the hypothalamus to secrete cortico-

trophin-releasing hormone (CRH), anterior pituitary cells

to secrete ACTH, and the adrenal cortical cells to secrete

cortisol [118,132]. Incubation of adrenal cells with IL-6

in vitro causes a dose-dependent increase in cortisol

[132]. This suggests that IL-6 is a major link between the

HPA axis and inflammatory system. In fact, it has been

suggested that IL-6 is the btissue CRHQ because of its

stimulation of glucocorticoid secretion, especially in

chronic stress situations [134,135]. This phenomenon

may contribute to the observed correlation between

CRP and serum cortisol in patients with active rheuma-

toid arthritis [136].
5. Clinical implications and future directions

The harmful effects of chronic sympathetic nervous

system and renin–angiotensin–aldosterone (RAA) system

activation were not fully appreciated until beta-adrenergic

blockers and ACE inhibitors achieved widespread clinical

use and were subjected to randomized prospective trials.

The same may prove true for the HPA axis. Although

some drugs, such as thiazolidinediones, fibrates and ACE

inhibitors, target certain glucocorticoid-responsive genes

[73,137–140], there are no drugs in widespread use that

specifically block glucocorticoid effects as their primary

mode of action or specifically modulate HPA axis tone.

Potential drug targets may include 11-beta-HSD enzymes

and other enzymes that modulate tissue effects of

glucocorticoids [141,142]. Potential target populations for

such treatments may include patients with depression,

chronic illness, or visceral obesity. With renewed research

interest in the vascular and metabolic effects of glucocorti-

coids, we may soon come to realize that glucocorticoids,

like other stress hormones, accelerate cardiovascular

senescence.
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