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Abstract

Ž .The two 11b-hydroxysteroid dehydrogenase 11b-HSD isozymes catalyze the interconversion of cortisol and cortisone. Type 1
Ž . Ž .11b-HSD 11b-HSD1 has bidirectional activity, while type 2 11b-HSD 11b-HSD2 mainly converts cortisol into cortisone. Of these

Ž .two hormones only cortisol has affinity to mineralocorticoid receptors MRs and thus induces mineralocorticoid effects. A normal
activity of 11b-HSD2 is crucial for prevention of mineralocorticoid activity of cortisol. Absent or decreased 11b-HSD2 activity results in
cortisol-mediated hypermineralocorticoid hypertension. In several hypertensive syndromes a decreased 11b-HSD2 activity has been

Ž .described as the pathogenetic mechanism of the increased blood pressure. In the apparent mineralocorticoid excess AME syndrome type
1, absence of 11b-HSD2 activity is caused by mutations in the gene coding for 11b-HSD2. In licorice-induced hypertension
glycyrrhetinic acid, the active substituent of licorice, inhibits 11b-HSD2 resulting in an acquired hypermineralocorticoid state. 11b-HSD2

Ž .activity is not decreased in glucocorticoid hypertension Cushing’s syndrome . In essential hypertension some evidence for decreased
systemic and skin activity of 11b-HSD1 andror 11b-HSD2 has been found, while renal activity of both isozymes appears to be normal.
11b-HSD2 activity is also present in cardiovascular myocytes of humans and dogs, and inhibition of 11b-HSD potentiates the vascular
response to catecholamines. Although MRs in the central nervous system have been incriminated in the pathogenesis of mineralocorticoid
hypertension, a pathophysiological role for 11b-HSD2 has not yet been described. Finally, in the placenta 11b-HSD2 reduces fetal
exposure to maternal glucocorticoids and a decreased activity of this isozyme may result in low birth weight and increased risk of high
blood pressure at adult age. q 1998 Elsevier Science B.V.
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In the majority of patients with hypertension the cause
is not known. In the last few years several studies have
suggested a role for the enzyme 11b-hydroxysteroid dehy-

Ž .drogenase 11b-HSD in the pathogenesis of hypertension.
In this paper we review the function of this enzyme under
normal conditions and in various forms of secondary
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3541734; e-mail: s.vanuum@aig.azn.nl

hypertension like the Apparent Mineralocorticoid Excess
Ž .AME syndrome and licorice-induced hypertension. The
potential role of 11b-HSD in the pathogenesis of glucocor-
ticoid and, in particular, primary hypertension is discussed.
Furthermore the relation between primary hypertension
and the activity of 11b-HSD in cardiovascular tissues, the

Time for primary review 27 days.
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central nervous system and in the placenta will be re-
viewed.

1. Physiological function of 11b-hydroxysteroid dehy-
drogenase

The 11b-HSD isozymes catalyze the dehydrogenation
of the naturally occurring glucocorticoids cortisol and cor-
ticosterone to their inactive 11-keto products cortisone and
11-dehydrocorticosterone as well as the reverse reductive
reaction. The isozymes are present in many tissues, but

w xtheir activity is not uniformly distributed 1 . Originally
11b-HSD was considered to be one single enzyme. Later
two independent isozymes were identified, called 11b-

w xHSD1 and 11b-HSD2 2 .
The isozyme 11b-HSD1 has first been cloned and

w x w xsequenced in the rat 3 and later also in man 4 . It is
ubiquitously present, e.g. in liver, lungs, gonads, hip-
pocampus, cerebellum, pituitary gland and also in the

w xproximal renal tubules 1,5,6 . The gene for 11b-HSD1 has
w xbeen located on chromosome 1 4 . This isozyme is

Ž .NADP H -dependent and catalyzes both dehydrogenation
w xand reduction 7,8 . In vitro both reactions are inhibited by

Ž .glycyrrhetinic acid GA , an important compound of
licorice, and by its hemisuccinate carbenoxolone. A slightly
higher GA concentration is necessary for inhibition of
reductase- than for inhibition of dehydrogenase-activity
w x9 . In the liver 11b-HSD1 predominantly converts corti-
sone to cortisol.

The second isozyme, 11b-HSD2, is a high affinity
NAD-dependent enzyme that is highly expressed in miner-
alocorticoid target tissues such as renal cortex, in particular

w x w xdistal tubules and collecting ducts 10 , and medulla 8 ,
w x w xrectal and sigmoid colon 8,11 , salivary glands 12 and

w xsweat glands 13 . It is also present in the adrenals and in

Žthe organs of the female reproductive system ovary,
. w xoviduct, uterus, and placenta 12,14 . The gene coding for

11b-HSD2 activity, HSD11B2, has been cloned in sheep
w x w x w x w x15 , mouse 13 , rabbit 16 , rat 17 and in the human

w xwhere it is located on chromosome 16 11 . While the
isozyme has generally been located in the microsomes,
recent studies have also demonstrated presence of 11b-

w xHSD2 in cell nuclei 18,19 . This isozyme has mainly
dehydrogenase activity and is already active at very low
cortisol concentrations. The Michaelis–Menten constant

w xfor 11b-HSD2 is 50–60 nmol 8,12 , compared to 17 mmol
w xfor 11b-HSD1 20 .

11b-HSD2 plays a key role in regulating mineralocorti-
coid activity of glucocorticoid hormones. In-vitro experi-
ments have shown that cortisol and aldosterone have simi-

Ž . w xlar affinities for mineralocorticoid receptors MR 21 , so
their functional aldosterone selectivity in vivo is appar-
ently not mediated by the receptor structure. Yet, MRs are
protected from exposure to cortisol by the isozyme 11b-
HSD2. This isozyme rapidly metabolizes the active miner-
alocorticoid cortisol to its inactive metabolite cortisone.
The physiological relevance of this enzyme for the regula-
tion of blood pressure and potassium balance was demon-
strated in studies in patients with apparent mineralocorti-

Ž . w xcoid excess AME 22 and in licorice-induced hyper-
w xtension 23 . In these patients renal activity of 11b-HSD2

is decreased.
In studies on renal 11b-HSD2 activity, analysis of

urinary corticosteroid excretion played an important role.
In the kidney cortisol is metabolised to cortisone. Cortisol

Ž .can be reduced to tetrahydrocortisol THF and allo-tetra-
Ž .hydrocortisol allo-THF , and cortisone to tetrahydrocorti-

Ž . Ž .sone THE Fig. 1: left panel . Therefore decreased renal
11b-HSD2 activity will result in an increased urinary
Ž .THFqallo-THF rTHE ratio and access of cortisol to the

Ž . Ž . Ž . Ž .Fig. 1. Under physiological conditions left panel cortisol F is metabolised to cortisone E by 11b-hydroxysteroid dehydrogenase type 2 11b-HSD2 .
Ž .As a consequence the mineralocorticoid receptor MR will not be exposed to relevant cortisol concentrations. When 11b-HSD2 activation is reduced,

Ž .either congenitally AME syndrome or by inhibition by glycyrrhetinic acid, cortisol is not completely metabolised to cortisone and therefore activates the
Ž . Ž .MR right panel . Urinary excretion of cortisol and its tetrahydrometabolites THF and allo-THF is increased while excretion of cortisone and its

Ž .tetrahydrometabolite THE is decreased. This results in increased ratio of THF q allo-THF to THE, reflecting decreased renal activity of 11b-HSD2.
5a red s 5a-reductase; 5bred s 5b-reductase.

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/38/1/16/328893 by guest on 10 April 2024



( )S.H.M. Õan Uum et al.rCardioÕascular Research 38 1998 16–2418

Ž .renal MR Fig. 1: right panel . Some of the studies in-
volved will be discussed in more detail below

Conversion of cortisol to cortisone has also been
w xdemonstrated in cardiovascular cells 24 . In rats, activity

of 11b-HSD is found in cardiac myocytes and fibroblasts,
and in vascular smooth muscle cells, but not in endothelial

w xcells 25–27 . The enzyme activity is NADP-dependent
w xand bidirectional 28 , indicating type 1 isozyme activity.

While cardiac activity of 11b-HSD type 1 is high in
species in which corticosterone is the predominant gluco-

Ž .corticoid rats, pigs and rabbits , it is low in species in
Žwhich cortisol is the major glucocorticoid humans and

. w xdogs 29 . Indeed, in human cardiomyocytes activity of
11b-HSD is mainly dependent on NAD, suggesting activ-

w xity of type 2 isozyme 30 . Both vascular smooth muscle
w xcells and skin arterioles express 11b-HSD2 31,32 .

Specific binding of aldosterone has been found in hu-
w xman heart 33 and cultured human arterial smooth muscle

w xcells 34 . In more detailed immunohistochemical studies,
MRs were localized in cardiac myocytes and fibroblasts,
vascular smooth muscle cells and in cardiac and vascular

w xendothelial cells 35,36 . These MRs can be activated by
aldosterone. This hormone is not solely produced by the
adrenals. Recently, synthesis of aldosterone has also been
described in cultured human vascular endothelial and

w xsmooth muscle cells 37,38 . In both species aldosterone
production was increased by AngII and potassium, and

Ž .decreased by angiotensin-converting enzyme ACE inhibi-
Ž .tion. Adrenocorticotropic hormone ACTH regulates

adrenal aldosterone synthesis, but it does not affect vascu-
w xlar aldosterone production 39 . This is explained by the

Žfinding that mitochondrial P-450 scc the enzyme that
regulates conversion of cholesterol to pregnenolone in an

.ACTH-dependent way is absent in vascular cells, while it
is the key enzyme for regulating corticosteroid synthesis in

w xthe zona glomerulosa of the adrenals 40 .
Activity of 11b-HSD has also been demonstrated in the

central nervous system. In studies in rat brains the highest
Ž .NADP-dependent type 1 enzyme activity was described

in hippocampus, cortex, pituitary, hypothalamus, brain stem
w xand spinal cord 41,42 . Expression of 11b-HSD type 2

mRNA was clearly found in the commissural portion of
the nucleus tractus solitarius, the subcommissural organ

w xand the ventrolateral ventromedial hypothalamus 43 , ar-
eas in the brain that are known to be involved in cardio-

w xvascular regulation mechanisms 44 . It is not clear whether
MRs in the brain are protected by 11b-HSD2. Although
the isozyme is present in the brain and administration of
inhibitors of 11b-HSD2 activity results in hypertension,

Ž .intracerebroventricular icv infusion of corticosterone does
not increase but decrease blood pressure, and blood pres-
sure does not change during administration of RU28318, a

w xspecific mineralocorticoid antagonist 45,46 .
Finally, expression of 11b-HSD2 mRNA and isozyme

activity have been demonstrated in the placenta of rats and
w xhumans 12,14 . In contrast to the 11b-HSD2 expressing

tissues that have been discussed previously, mineralocorti-
coid receptors have not been demonstrated in the placenta.
Therefore the isozyme does not serve as a protector against
cortisol-mediated activation of MR, but it regulates fetal

w xexposure to maternal glucocorticoids 47 .

2. Apparent mineralocorticoid excess syndrome

In the 1970s a new hypertensive syndrome consisting of
hypertension, hypokalaemia, low renin activity and low

w xaldosterone production was described 22 . Additional clin-
ical features were short stature, polyuria, polydipsia and
failure to thrive. More than 20 cases with this syndrome,

w xmainly children, have been published 48,49 . Sometimes
hypertensive retinopathy and cardiomegaly were already
discovered at a very young age, and four patients died
before the age of 15 as a result of complications of

w xhypertension or hypokalaemia 48,50 . Clinical and bio-
Žchemical findings suggested overproduction of an un-

.known adrenal mineralocorticoid, but circulating cortisol
was normal and no other steroid could be identified.
Therefore the syndrome was described as the Apparent

Ž . w xMineralocorticoid Excess AME syndrome 51 . Adminis-
Ž .tration of hydrocortisone scortisol aggravated the condi-

w x wtion 52 , while dexamethasone administration suppression
Ž .xof adrenocorticotropic hormone ACTH normalized hy-

pokalaemia and blood pressure. The AME syndrome re-
sponded to spironolactone, a MR blocker. Amiloride had
some effect but potassium supplements were still required
w x53 . Further studies showed that conversion of plasma

w3 x11a H cortisol to tritiated water and cortisone was re-
Ž .duced and urinary THFqallo-THF rTHE ratio was in-

w xcreased 54 . These data suggested that the syndrome was
caused by decreased activity of 11b-HSD resulting in
activation of the MR by cortisol. This form of AME was
called type 1. Apart from the decreased 11b-HSD activity

wit seems that 5b-reductase activity measured by ratio of
Ž . x5a- including 5a-THF to 5b-metabolites in urine is also

w xdecreased in this syndrome 50 . The clinical relevance of
the decreased 5b-reductase activity is however not clear.

In recent years studies on HSD11B2, the gene coding
for 11b-HSD2 activity, confirmed that type 1 AME syn-
drome is caused by reduced 11b-HSD2 activity. Genetic
analysis has been done in 22 patients out of 17 families. In
15 families homozygote mutations in HSD11B2 were
found. In one family a compound heterozygote was found
while in the remaining family no mutation was identified
w x55,56 . The mutations result in a premature stop codon or
a change in amino acid sequence. When genes carrying the
mutations were expressed in cultured chinese hamster ovary
cells the activity of 11b-HSD2 in these cells was consider-
ably decreased ranging from 0.4 to 82% of activity in cells

w xtransfected with a normal gene 57 . The inheritance of
AME1 is autosomal recessive. Studies in parents of a child
with AME1 revealed that in the heterozygote state blood
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pressure is not increased and urinary steroid profiles were
w xnormal 58 . The gene for 11b-HSD1 is normal in patients

w xwith AME1 59 . The AME type I syndrome is one of the
few examples of human hypertension caused by a single
gene defect.

Ulick and colleagues described a second form of AME,
called AME type 2. In four patients with this variant no
evidence for severely impaired activity of 11b-HSD2 or

w x5b-reductase was found 60 . As the total amount of
THFqallo-THF in urine was low compared to urinary
cortisol it was concluded that in these patients the metabolic
inactivation of cortisol by ring A reduction is impaired
w x61 . Walker et al. have suggested that in AME type 2 both
11-dehydrogenase and 11-reductase activity are reduced
w x62 . No molecular analysis of this syndrome has been
published.

An other inheritable hypertensive syndrome with signs
of hypermineralocorticoid activity that can also be relieved
by dexamethasone is glucocorticoid-remediable aldostero-

Ž . w xnism GRA 63,64 . In contrast to the AME syndrome,
aldosterone secretion rate is increased in GRA and is

w xregulated by ACTH 65 . Severe hypertension is most
commonly discovered in infancy or early adulthood. Usu-
ally many family members are affected due to autosomal

w xdominant inheritance 66 . GRA is probably caused by a
mutation in chromosome 8q, resulting in fusion of the
regulatory region of 11b-hydroxylase to the coding se-

w xquences of aldosterone synthase 67 . Thus aldosterone
synthase is expressed in the ACTH regulated zona fascicu-
lata, explaining the increased synthesis of aldosterone and
two abnormal adrenal steroids, 18-oxocortisol and 18-hy-

w xdroxycortisol 68 . The resulting mineralocorticoid excess
state suppresses physiological aldosterone synthesis in the
zona glomerulosa.

3. Licorice-induced hypertension

Excessive consumption of licorice or its active compo-
nent GA may result in severe hypertension, hypokalaemia

w xand other signs of mineralocorticoid excess 69 . In some
cases the hypokalaemia has resulted in rhabdomyolysis

w xandror tetraparesis 70,71 . In the Netherlands the average
Žyearly licorice consumption is 2.2 kg per person ap-

.proximately 450 mg GA , but individual consumption
probably varies considerably, just as reported in Denmark
w x w x72 and New Zealand 73 . The effects of licorice become
visible after 3–10 days and are usually reversible in sev-
eral weeks. However, suppression of the renin
angiotensin-system has been described for up to four

w xmonths after cessation of consumption 71 . Just as in
AME syndrome, licorice-induced hypertension and hy-
pokalaemia are cortisol-dependent and respond to spirono-

w xlactone 74 . Further, consumption of GA or licorice re-
sults in increased cortisolrcortisone ratio in plasma and

w xurine 23,75 . This suggested that licorice-induced hyper-

tension is caused by decreased 11b-HSD2 activity. In in
vitro studies both GA and carbenoxolone inhibit activity of
this isozyme in a dose-dependent manner. In rat kidney
microsomes 70% inhibition of isozyme activity was found
after addition of GA 20 nM or carbenoxolone 16 nM.
However, in intact renal cortical tubules substantially

Ž y4 y6 .higher GA concentrations 10 to 10 M were required
w xfor 11b-HSD2 inhibition 76 . In contrast to GA, car-

w xbenoxolone also inhibits 11b-HSD1 77 .
In a study in volunteers no change of plasma potassium,

aldosterone and PRA was found during GA intake of 217
mgrday, but a decrease of these parameters was clearly
present at 813 mgrday. Increased blood pressure was only

w xfound in 2 out of 12 volunteers in the high dose group 78 .
This study suggests that licorice-induced effects in humans
are dose-dependent, but a direct relation between plasma
GA concentration and changes in blood pressure, plasma
cortisolrcortisone ratio or potassium has not been pub-
lished. A review by Størmer et al. shows that adverse
effects of licorice have been reported after daily GA intake

Žranging from 0.01 to 4 g. A daily intake of 10 mg GA "5
.g licorice is regarded as a safe dose for most healthy

w xadults 79 . The wide variability of GA effects may be
explained by individual variation in the effects of miner-

w xalocorticoids, the renal mineralocorticoid escape 80,81 ,
variation in bioavailability of GA or by individual varia-
tion in sensitivity of 11b-HSD2 to GA. In conclusion
licorice consumption can result in decreased 11b-HSD2
activity resulting in hypertension and hypokalaemia due to
cortisol-mediated activation of the MR.

4. Activity of 11b-HSD in glucocorticoid induced
hypertension

Hypertension occurs in approximately 75% of patients
w xwith Cushing’s syndrome 82 . In 20% of patients treated

w xwith oral glucocorticoids hypertension was found 83 , the
incidence of hypertension probably being dose-dependent.
Several studies were done to investigate the activity of
11b-HSD2 in patients with Cushing’s syndrome. The uri-

Ž .nary ratio of THFqallo-THF rTHE was increased in
these patients, suggesting decreased 11b-HSD2 activity.
The ratio was highest in patients with Ectopic ACTH

w xsyndrome 84,85 . Further, infusion of ACTH in dexa-
methasone-treated normal volunteers resulted in increased
cortisolrcortisone ratio. However, an inhibitory effect of
ACTH on 11b-HSD2 could not be confirmed by in vitro

w xexperiments in human kidney slices 86 . Further it was
Ž .shown that while the THFqallo-THF rTHE ratio was

increased in patients with Cushing’s syndrome, the total
THE excretion was not decreased, but increased, suggest-

w xing that 11b-HSD2 is quite active 84,85 . Therefore it
seems that in patients with Cushing’s syndrome absolute
11b-HSD2 activity is not decreased, but that the enzyme
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capacity is overwhelmed by the increased cortisol concen-
tration resulting in only relatively reduced renal conversion
of cortisol to cortisone.

5. The possible role of 11b-HSD2 in the pathogenesis of
primary hypertension

Already 35 years ago it was described that in hyperten-
sive patients plasma cortisol levels and urinary excretion

w xof cortisol are normal 87 , so cortisol was thought not to
play a significant role in the pathogenesis of essential
hypertension. However, while treatment with the synthetic
glucocorticoid dexamethasone in a dose of 0.5 mgrday
Ž .suppressing adrenal corticosteroid production did not
change blood pressure in normotensive volunteers, it re-
sulted in a fall in supine blood pressure in patients with

w xessential hypertension 88 . In the absence of increased
circulating concentrations of adrenal corticosteroids, the
tissue effects of these hormones may be increased due to
reduced 11b-HSD2 activity. Therefore the possible role of
decreased 11b-HSD, in particular type 2, activity in the
pathogenesis of essential hypertension was investigated in
several studies.

Analysis of the corticosteroid excretion pattern in a
group of 68 hypertensive patients provided evidence for
small but significantly decreased activities of both 11b-

w xHSD2 and 5b-reductase compared to a control group 89 .
In another study in 128 patients with essential hyper-
tension and 39 normotensive controls analysis of urinary
glucocorticoid metabolites suggested normal renal 11b-

w xHSD2 activity in the hypertensive group 90 . Takeda et al.
studied 30 patients with low-renin essential hypertension
and 20 normotensive controls. Plasma aldosterone and

Ž .urinary THFqallo-THF rTHE ratio were not different
w xbetween both groups 91 . In a study on the plasma

w3 xhalf-life of 11a H cortisol, no difference was found be-
tween 20 patients with essential hypertension and 19
matched healthy controls. The plasma half-life of

w3 x11a H cortisol was prolonged in a subgroup of patients,
w xsuggesting decreased 11b-HSD activity 92 . However, the

Ž .urinary THFqallo-THF rTHE ratio was normal and no
hypokalaemia or other signs of increased renal mineralo-
corticoid receptor activation were found. Therefore, the
decreased 11b-HSD activity in this subgroup of patients
with essential hypertension is probably extra-renal. The

w3 xhalf-life of 11a H cortisol was also prolonged in 4 pa-
tients continuing effective antihypertensive medication,
thus it is unlikely that the decrease in 11b-HSD activity
was induced by the hypertension per se. It seems that renal
activity of 11b-HSD2 is normal in patients with essential
hypertension.

Other studies focused on 11b-HSD activity in the skin.
Vasoconstriction by glucocorticoids in the skin can be
measured by applying glucocorticoids to the forearm skin
and measuring the intensity of the vasoconstriction the

next day. In a study using this assay in healthy normoten-
sive volunteers, the skin vasoconstrictor sensitivity to glu-
cocorticosteroids was increased by oral administration of
GA, probably mediated by inhibition of 11b-HSD activity
w x93 . Compared to a group of healthy volunteers, skin
dermal vasoconstriction on topical glucocorticoids was

w3 xincreased and mean half-life of 11a H cortisol was pro-
longed in a group of hypertensive patients. However the
increased skin vasoconstrictor response was not signifi-
cantly correlated to the increased half-life of

w3 x11a H cortisol and was also present on beclomethasone,
w xa glucocorticoid that is not metabolized by 11b-HSD 94 .

Corticosteroids have been reported to potentiate vascu-
w xlar responses to catecholamines 95 . In volunteers car-

benoxolone, an inhibitor of 11b-HSD type 1 and 2, orally
for 7 days potentiated vascular reactivity to noradrenaline
Ž .NA . Both forearm vasoconstriction to intra-arterial NA
and the pressor response to systemic NA were enhanced
w x96 . The effect of inhibition of 11b-HSD on vascular
reactivity has not been studied in patients with essential
hypertension. Also no studies have been performed to
compare the vascular activity of 11b-HSD in hypertensive
patients with that in healthy volunteers.

As mentioned before, both 11b-HSD activity and MRs
have been found in the brain. In rats icv infusion of
aldosterone for 14 days resulted in elevation of systolic
blood pressure, while no pressor effect was found when
the same dose of aldosterone was infused subcutaneously
w x97 . A similar effect of aldosterone was found in both

w xsalt-replete and salt-depleted dogs 98 . Administration of
carbenoxolone, both orally and icv, and oral GA also
increased blood pressure. This could be completely pre-

w xvented by RU28318 icv 45 . Interestingly, the develop-
ment of hypertension in rats receiving aldosterone icv was
prevented by bilateral adrenalectomy but could be restored

w xby systemic administration of corticosterone 99 . This
indicates that mineralocorticoid receptors in the central
nervous system may participate in the pathogenesis of
mineralocorticoid hypertension. A pathogenetic role of
cerebral 11b-HSD2 remains to be established.

Some studies focused on the relation between 11b-
HSD2 activity in the placenta and primary hypertension.
As already mentioned, 11b-HSD2 activity in the placenta
regulates fetal exposure to maternal glucocorticoids. In-
creased fetal exposure to glucocorticoids inhibits fetal

w xgrowth in rats and humans 100 . In epidemiologic studies
an inverse relation between birth weight and adult blood

w xpressure was found 101,102 . Thus it was hypothesized
that decreased placental 11b-HSD2 activity results in in-
creased fetal exposure to maternal glucocorticoids, low
birth weight and subsequent hypertension at adult age
w x103 . Indeed in both rats and humans a positive correla-
tion between placental 11b-HSD2 activity and fetal weight

w xwas found 104,105 . Administration of dexamethasone
Žwhich is not metabolised by 11b-HSD2 and passes the

.placenta to pregnant rats resulted in 20% reduction in
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birth weight and significantly increased systolic blood
pressure in offspring, while blood pressure of the mothers

w xwas not changed 105 . Further, administration of car-
benoxolone to pregnant rats also reduced birth weight and

w xelevated blood pressure in offspring 106 . Thus, decreased
placental 11b-HSD2 activity may result in glucocorticoid-
mediated reduction in birth weight and in an increased risk
of hypertension at adult age.

Finally some evidence for a role of 11b-HSD2 in the
pathogenesis of essential hypertension was found in a
study on genetic markers in black subjects. An association

Žwas found between D16S496 a microsatellite marker
. w xflanking 11b-HSD2 and essential hypertension 107 .

These results have not been confirmed by other studies and
the clinical relevance needs to be established.

In conclusion, activity of 11b-HSD2 is crucial for
prevention of mineralocorticoid activity of cortisol. Absent
or decreased renal 11b-HSD2 activity results in mineralo-
corticoid hypertension both in AME syndrome type 1 and
during excessive consumption of licorice. The isozyme
does not play a role in glucocorticoid hypertension. In
patients with essential hypertension some evidence for
decreased systemic and skin activity of 11b-HSD has been
found, while renal activity seems normal. In vascular
myocytes inhibition of the enzyme results in increased
vascular response to catecholamines, but this has not been
studied in patients with essential hypertension. MRs in the
central nervous system may participate in the pathogenesis
of mineralocorticoid hypertension, but a role of cerebral
11b-HSD2 is unknown. Finally in the placenta 11b-HSD2
does not protect mineralocorticoid receptors but reduces
fetal exposure to maternal glucocorticoids. Decreased
isozyme activity may result in low birth weight and high
blood pressure at adult age.
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