OUP user menu

Brahma-related gene 1 (Brg1) epigenetically regulates CAM activation during hypoxic pulmonary hypertension

Dewei Chen, Fei Fang, Yuyu Yang, Jian Chen, Gang Xu, Yong Xu, Yuqi Gao
DOI: http://dx.doi.org/10.1093/cvr/cvt214 363-373 First published online: 16 September 2013


Aims Establishment of an inflammatory milieu following elevated leukocyte adhesion to the vascular endothelium, which is mediated by transcriptional activation of cell adhesion molecules (CAMs), contributes to the pathogenesis of chronic hypoxia-induced pulmonary hypertension (HPH). The epigenetic switch that dictates CAM transactivation in response to hypoxia in endothelial cells leading up to HPH is not fully appreciated.

Methods and results We report here that brahma-related gene 1 (Brg1) and brahma (Brm), two catalytic components of the mammalian chromatin remodelling complex, were induced in cultured endothelial cells challenged with hypoxia in vitro as well as in pulmonary arteries in an animal model of HPH. Over-expression of Brg1/Brm enhanced, while the depletion of Brg1/Brm attenuated, CAM transactivation and adhesion of leukocytes. Endothelial-specific deletion of Brg1/Brm ameliorated vascular inflammation and HPH in mice. Chromatin immunoprecipitation (ChIP) and re-ChIP assays revealed that hypoxia up-regulated the occupancies of Brg1 and Brm on CAM promoters in a nuclear factor κB (NF-κB) -dependent manner. Finally, Brg1 and Brm activated CAM transcription by altering the chromatin structure surrounding the CAM promoters.

Conclusion Our data suggest that Brg1 provides the crucial epigenetic link to hypoxia-induced CAM induction and leukocyte adhesion that engenders endothelial malfunction and pathogenesis of HPH. As such, targeting Brg1 in endothelial cells may yield promising strategies in the intervention and/or prevention of HPH.

  • Hypoxic pulmonary hypertension
  • Epigenetics
  • Brg1
  • Transcriptional regulation
  • Adhesion molecules
View Full Text

Sign in

ESC members If your subscription is provided via the European Society of Cardiology, either as a member or an ESC Congress delegate, select the 'ESC Member and Congress Delegate Sign In' link in the list below. Discover if you are an ESC member here. Note: after sign in you will be redirected to the journal's home page. 'ESC member' will display at the top of the page to indicate you have full access rights for this session.

Otherwise, if your subscription is via OUP, enter your OUP username and password, or select an alternative sign in option below.

List of OpenAthens registered sites, including contact details.